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This paper presents state of the art three-dimensional numerical simulations of the
Rayleigh–Bénard convection in a supercritical fluid. We consider a fluid slightly above
its critical point in a cube-shaped cell heated from below with insulated sidewalls; the
thermodynamic equilibrium of the fluid is described by the van der Waals equation of
state. The acoustic filtering of the Navier–Stokes equations is revisited to account for
the strong stratification of the fluid induced by its high compressibility under the effect
of its own weight. The hydrodynamic stability of the fluid is briefly reviewed and we
then focus on the convective regime and the transition to turbulence. Direct numerical
simulations are carried out using a finite volume method for Rayleigh numbers varying
from 106 up to 108. A spatiotemporal description of the flow is presented from the
convection onset until the attainment of a statistically steady state of heat transfer.
This description concerns mainly the identification of the vortical structures in the
flow, the distribution of the Nusselt numbers on the horizontal isothermal walls, the
structure of the temperature field and the global thermal balance of the cavity. We
focus on the influence of the strong stratification of the fluid on the penetrability of
the convective structures in the core of the cavity and on its global thermal balance.
Finally, a comparison with the case of a perfect gas, at the same Rayleigh number, is
presented.

1. Introduction
Convection in a fluid close to its gas–liquid critical point (CP) has been a subject

of growing interest since the demonstration of the piston-effect (PE), the thermo-
acoustic effect responsible for the fast thermal equilibrium observed in such a fluid in
the absence of convection. In 1987, under microgravity conditions, Nitsche & Straub
observed a fast and homogeneous increase of the temperature inside a spherical cell
containing SF6 slightly above the CP when subjected to a heating impulse. This
phenomenon was then explained theoretically (Zappoli et al. 1990; Onuki, Hao &
Ferrell 1990; Boukari et al. 1990) by the well-known critical anomalies, more precisely
by the divergence of the thermal expansion coefficient and the vanishing of its
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thermal diffusivity when approaching the CP. Indeed, the heating of a cell containing
a supercritical fluid (SCF) induces along the heated wall a thin thermal boundary
layer in which density shows large variations because of the divergence of the thermal
expansion coefficient; this thermal layer expands, compressing adiabatically the rest
of the fluid, leading by thermo-acoustic effects (the so-called PE) to a fast and
homogeneous heating of the bulk of the cell. Several experiments were carried out
subsequently, mainly in microgravity (Guenoun et al. 1993; Straub, Eicher & Haupt
1995; Garrabos et al. 1998) but also on Earth (Kogan & Meyer, 1998; Zhong &
Meyer 1999), and confirmed the existence of the PE.

Since 1996, many experimental and numerical studies have been devoted to the
interaction between the PE and natural convection. The Rayleigh–Bénard confi-
guration (bottom heating) has received particular attention (Kogan, Murphy & Meyer
1999; Amiroudine et al. 2001; Furukawa & Onuki 2002) because the hydrodynamic
stability of the SCF in that case is governed by an interesting and non-common
criterion. Owing to the PE, the thermal field exhibits a very specific structure in the ver-
tical direction. A very thin hot thermal boundary layer is formed at the bottom, then a
homogeneously heated bulk settles in the core at a lower temperature, and at the top, a
cooler boundary layer is formed in order to continuously match the bulk temperature
with the colder temperature of the upper wall. A linear analysis, carried out by Git-
terman & Steinberg (1970), showed that the hydrodynamic stability of these thermal
boundary layers, when subjected to a gravity field, depends on the interaction between
two stability criteria which, for a normally compressible fluid, are separately available
at very different space scales: on one hand, the classical Rayleigh criterion, derived
from the Boussinesq approximation, hence available at small space scales, and on the
other hand, the Schwarzschild criterion, usually encountered in atmospheric science,
where the stabilizing effect of the hydrostatic pressure becomes appreciable. Because of
the divergence of the isothermal compressibility of a SCF, the Schwarzschild criterion
becomes available at small space scales; this was proven theoretically (Gitterman &
Steinberg 1970; Carlès & Ugurtas 1999), experimentally (Kogan & Meyer 2001), and
numerically (Amiroudine et al. 2001). Taking advantage of the interaction between
those two stability criteria, a numerical study (Accary et al. 2005a) showed that, in
spite of convection onset in the thermal boundary layers according to the classical
Rayleigh criterion, a reverse transition to stability through the Schwarzschild one is
possible without any external intervention. In our opinion, the hydrodynamic stability
of the thermal boundary layers developed in this configuration has been sufficiently
studied (Accary et al. 2005b) and we focus our attention now on the convective regime
of the flow. Because of the particular physical properties of the fluid in the vicinity
of the CP, the convective regime of the Rayleigh–Bénard problem is turbulent for
unusually low intensities of heating (∼mK). In this paper, three-dimensional direct
numerical simulations are carried out for Rayleigh numbers varying from 2.68 × 106

up to 160 × 106. For a perfect gas (PG), this range of Rayleigh numbers corresponds
to the transition between soft and hard turbulence; however, this is not always the
case for the SCF because of its strong stratification induced by its high isothermal
compressibility.

In § 2, the problem under consideration is presented. In § 3, the mathematical model
is described together with the acoustic filtering of the Navier–Stokes equations. The
numerical method is briefly recalled in § 4 and some details of the numerical simulation
are mentioned. In § 5, the hydrodynamic stability of the thermal boundary layers is
discussed and the convection onset is briefly reviewed. The beginning of the convective
regime is presented in § 6. The steady-state turbulent regime and the details of the
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Figure 1. Geometry of the cube-shaped cavity and the velocity and temperature conditions
applied to the boundaries. The vertical axis z′ is co-linear with the acceleration due to the
Earth’s gravity g′. After the first seconds of heating, the temperature field is vertically stratified,
divided in three distinct zones: two thermal boundary layers and the bulk of the cavity.

temperature and the dynamic fields are presented in § 7. The global thermal balance
of the cavity is discussed in § 8. In § 9, a comparison with the case of a PG is presented
at the same Rayleigh number. Finally, the paper is concluded in § 10.

2. The problem under consideration
We consider a SCF in a cube-shaped cavity (of height H ′ = 10 mm) subjected to

the Earth’s gravity field g′ =9.81 m s−2 (figure 1). The horizontal walls are isothermal
while the sidewalls are insulated, and no-slip conditions are applied to all the walls.
Initially the fluid is at rest, in thermodynamic equilibrium at a constant temperature
T ′

i slightly above the critical temperature T ′
c , such that T ′

i = (1 + ε) T ′
c , where ε � 1

defines the non-dimensional proximity to the CP. Under the effect of its own weight,
the fluid is stratified in density and in pressure, with a mean density equal to
its critical value ρ ′

c. While maintaining the top wall at its initial temperature T ′
i , the

temperature of the bottom wall is gradually increased (during 1 s) by �T ′ (a few mK).

3. The mathematical model
The mathematical model for a SCF flow (Zappoli 1992) is described by the Navier–

Stokes and energy equations written for a Newtonian and highly conducting van der
Waals fluid:
continuity

∂ρ ′

∂t ′ + ∇ · (ρ ′v′) = 0, (1)

momentum

∂(ρ ′v′)

∂t ′ + ∇ · (ρ ′v′ · v′) = −∇P ′ + μ′
[

∇2v′ +
1

3
∇(∇ · v′)

]
+ ρ ′ g′, (2)

energy

∂(ρ ′e′)

∂t ′ + ∇ · (ρ ′e′v′) = −P ′(∇ · v′) + ∇ · (λ′∇T ′) + Φ ′, (3)
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Van der Waals

P ′ + a′ρ ′2 =
ρ ′r ′T ′

1 − b′ρ ′ , (4)

where P ′ is the pressure, T ′ is the temperature, and ρ ′ is the density. v′(u′, v′, w′) is
the velocity, g′ = (0, 0, −g′), e′ is the internal energy, and Φ ′ is the viscous energy
dissipation. μ′ is the dynamic viscosity, λ′ is the thermal conductivity, r ′ is the PG
constant, a′ and b′ are respectively the energy parameter and the co-volume related
to the critical coordinates T ′

c and ρ ′
c by: b′ = 1/(3ρ ′

c) and a′ = 9 r ′T ′
c/(8ρ ′

c).
In spite of its simplicity, the van der Waals equation of state contains the required

conditions for the existence of the CP and yields a critical divergence as (T ′/T ′
c − 1)−1

of the thermal expansion coefficient β ′
P , of the isothermal compressibility χ ′

T , and of
the heat capacity at constant pressure C ′

P . Note that the real critical exponents, which
are the same for all fluids, differ from those obtained from the van der Waals equation
of state but it remains a good approximation to carry out qualitative studies. The
critical divergence of the thermal conductivity is given by λ′ = λ′

0(1 + Λε−0.5) where
Λ =0.75 and λ′

0 is the thermal conductivity for a PG. The heat capacity at constant
volume C ′

V and the dynamic viscosity are supposed to be constant and equal to those
of a PG, C ′

V 0 and μ′
0 respectively. With the van der Waals equation of state, the

expression of the internal energy is given by δe′ = C ′
V δT ′ − a′δρ ′.

In order to make the variables dimensionless, T ′
c , ρ ′

c, and r ′ρ ′
cT

′
c are used

respectively as representative scales of the thermodynamic variables T ′, ρ ′, and P ′.
The independent variables of length x ′ (x ′, y ′, z′) and time t ′ are scaled respectively
by the height of the cavity H ′ and the PE time scale given by t ′

PE = Ψ −1ρ ′
cH

′2/μ′
0

with Ψ = ε−1(Λ−1 + ε−0.5) (Zappoli 1992; Zappoli et al. 1999). The PE time scale is
the time necessary for the PE to homogenize the temperature in the core of the
cavity; it is between the acoustic time scale (H ′/c′) and the thermal diffusion one
(H ′2/D′

T ) where c′ is the sound velocity in the SCF and D′
T is the thermal diffusivity.

Hence, the representative scale of velocity is V ′
PE = H ′/t ′

PE . This scaling introduces
the Reynolds number Re = Ψ , the Froude number Fr = (V ′

PE )2/(g′H ′), the Prandtl
number based on the properties of the PG assumption, Pr0 = μ′

0C
′
P0/λ

′
0, and the

Mach number Ma = V ′
PE/c′

0 where c′
0 =

√
γ0 r ′T ′

c is the speed of sound for a PG (with
γ0 =C ′

P0/C ′
V 0). Note that the PE time scale obtained by Onuki et al. (1990) is given

by t ′
1 = H ′2/D′

T (γ − 1)2, where D′
T is the thermal diffusivity and γ = C ′

P /C ′
V is the

specific-heat ratio. Adapted for a van der Waals’ gas and with the assumption that
ε � 1, t ′

1 ≈ Pr/Λγ0(γ0 − 1) × t ′
PE (where γ /γ0 = CP /CP0 = 1+(1 − 1/γ0)ε

−1).
Despite its high isothermal compressibility, the sound speed c′ in a SCF, defined

by c′2 = C ′
P /C ′

V × χ ′
T

−1, does not vanish at the CP according to the van der Waals
equation of state, indeed C ′

P /C ′
V and χ ′

T diverge with the same critical exponent
of −1, which allows the acoustic filtering of the equations. Hence with the basic
assumption that Ma � 1, all the primary dimensionless variables of the problem
φ = t (v, T , P, ρ) can be expanded in series of Ma2 (Paolucci 1982) as follows:
φ = φ(0) + γ0 Ma2φ(1) + o(Ma2) where φ(0) and φ(1) are O(1) The O(1) and O(Ma2)
parts of the governing equations resulting from this expansion that need to be solved
are: O(1) continuity

∂ρ

∂t
+ ∇ · (ρ · v) = 0, (5)

O(1) momentum

∇Pth = 0,
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O(Ma2) momentum

∂(ρv)

∂t
+ ∇ · (ρvv) = −∇P (1) +

1

Re

[
∇2v +

1

3
∇(∇ · v)

]
+

eg

Fr
(ρ − ρi), (6)

O(1) energy

∂(ρT )

∂t
+ ∇ · (ρvT ) = − (γ0 − 1)(Pth + aρ2)(∇ · v) +

γ0

RePr0

∇ · [(1 + Λ(T − 1)−0,5)∇T ],

(7)

O(1) van der Waals

Pth + Phyd =
ρT

1 − bρ
− aρ2. (8)

In these equations, v(u, v, w), T , P , and ρ refer to the O(1) of the dimensionless
variables, the superscript (0) has been omitted for conciseness. Pth and Phyd are
respectively the thermodynamic pressure (homogeneous in space but time varying
according to the O(1) momentum equation) and the time-independent hydrostatic
pressure (P (0) = Pth + Phyd), a = 9/8 and b = 1/3 are the dimensionless parameters of
the van der Waals equation of state, and eg = (0,0, −1). Before the heating begins,
the initial dimensionless density distribution ρi , the initial thermodynamic pressure
Pthi , and the hydrostatic pressure Phyd are obtained from the initial thermodynamic
and static equilibrium with the constraint of a dimensionless mean density equal to 1.
This results in

Ti = 1 + ε, ρi =
K

eK − 1
eKz, Pthi

=
1 + ε

1 − b
− a, Phyd = χ−1

T (ρi − 1), (9)

where

χ−1
T =

1 + ε

(1 − b)2
− 2a, K = χT

γ0Ma2

Fr
.

This low-Mach-number approximation differs from the classical one where ρi =1
and consequently Phyd = 0. Indeed, owing to the divergence of the isothermal
compressibility of the SCF, the hydrostatic pressure induces density variations (ρi −1)
comparable to those resulting from a weak heating. This has been done by keeping
the buoyancy term (γ0Ma2/Fr)ρ(0)eg in the leading O(Ma2) order of the momentum
equation (6), while in the classical low-Mach-number approximation this term is
shifted to O(Ma4). It has been shown that this modification is essential for a correct
prediction of the convection onset in the thermal boundary layers (Accary et al.
2005c).

We consider the carbon dioxide critical coordinates (T ′
c = 304.13 K, ρ ′

c =467.8
Kg m−3) and physical properties (r ′ =188 JKg−1 K−1, μ′

0 = 3.44 × 10−5 Pas, C ′
V 0 =

658 JKg−1 K−1, λ′
0 = 0.01 Wm−1 K−1, Pr0 = 2.274). The simulations were carried

out for T ′
i − T ′

c = 1 K (ε = 3.29 × 10−3); in this case, t ′
PE =0.256 s, V ′

PE = 3.9 cm s−1,
Re =5710, Fr =1.55 × 10−2, K = (4/9ε)(γ 0Ma2/(Fr) = 2.32 × 10−4, and the effective
Prandtl number Pr = Pr0ε

−0.5 = 39.6.

4. Numerical method
The governing equations are solved using a fully implicit finite volume method

on a staggered structured but non-uniform mesh using the PISO velocity–pressure
coupling algorithm (Patankar 1980). The method is second-order accurate in space: a
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second-order hybrid interpolation is used for the advective terms while a second-order
central difference scheme is used for the discretization of the diffusion terms. Using
a three-level Euler scheme, the method is accurate to the third order in time. The
numerical scheme is accurate and stable for a very wide range of the grid Péclet
number.

At each time step and at each PISO iteration k, after computing the temperature
field, the density is linearized using the van der Waals equation as follows:

ρk =
P k

th + Phyd

T k

1 − bρk−1
− aρk−1

=
P k

th + Phyd

f (T k, ρk−1)
. (10)

The thermodynamic pressure at iteration k is computed from the conservation of the
total mass of the fluid, since∫

Ω

ρkdV = 1 = P k
th

∫
Ω

dV

f (T k, ρk−1)
+

∫
Ω

Phyd dV

f (T k, ρk−1)
. (11)

Then the density field at iteration k is updated using (10). More details about the
numerical method can be found in Accary & Raspo (2006) where the code has been
thoroughly validated on an analytical solution and on several benchmark problems
of natural convection.

The dimensionless computational domain is a cube of unit length, Ω = [0,1]3. For
the momentum equation, Dirichlet conditions (v = 0) are applied on all boundaries.
For the energy equation, homogeneous Neumann conditions are applied on the
vertical boundaries and Dirichlet conditions on the horizontal ones: T (z = 1) = Ti

and after 1 s of simulation T(z = 0) = Ti + �T , �T = �T ′/T ′
c being the dimensionless

intensity of heating.
The mesh size and time step depend on the heating applied to the bottom plate; the

mesh size varies between 1003 and 2003 computation points and the dimensionless
time step varies between 0.01 and 0.1. For a better description of the solution in the
boundary layers, the mesh is refined in the vicinity of the walls; as one moves away
from the wall, the control volume size increases according to a geometric progression
of ratio 2. At each time step, the converged solution is supposed to be obtained when
the residuals of all transport equations reach 10−9 in non-dimensional form.

5. Hydrodynamic stability of the thermal boundary layers
As mentioned earlier, because of the PE, the temperature field is stratified vertically

with three distinct zones after the first few seconds of heating: the hot boundary layer,
the cold boundary layer and the bulk of the cavity. Regardless of the considered
heating, as long as the flow is dominated by the diffusion and by the PE, the thermal
boundary layers grow as

√
D′

T t ′ with D′
T =5.18×10−5 cm2 s−1. For �T ′ = 1 mK,

figure 2(a) shows the fast and homogeneous increase of the temperature in the bulk
of the cavity by the PE and the growth of the thermal boundary layers. Figure 2(b)
shows the corresponding density profiles; we notice that the density variations induced
by the heating are comparable to those resulting from the hydrostatic pressure, which
justifies the adaptation of the low-Mach-number approximation by including the fluid
stratification in the model.

The thickness h′ of the hot boundary layer is defined as the average distance from
the bottom wall to where the local vertical temperature gradient becomes equal to the
global one between the horizontal plates, �T ′/H ′. The total temperature variation
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Figure 2. (a) Temperature profiles for �T ′ = 1 mK showing the action of the PE and the
growth of the thermal boundary layers before the convection onset. (b) The corresponding
density profiles scaled by the density variation due to stratification in the dimensionless form,
�ρs = K = (4/9ε)(γ0Ma2/(Fr).

(a) (b)0.12 0.8

10–6

10–8

10–10

10–12

10–14

10–16

12 000 Ens

Racorr

R
ac

or
r (

h,
 δ

T
) 

10 000

8000

6000

4000

2000

0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.10

0.08

0.06h

0.04

0.02

0 50
t

h

100 50
E

ns
 (

h)
t

100

δT

δT
ΔT

Figure 3. (a) Time evolution of the hot boundary layer thickness h and of the temperature
difference inside it δT for �T ′ =1 mk. The symbol (�) indicates the beginning of the convective
regime. (b) Time evolution of the local Rayleigh number Racorr(h, δT ) related to the hot
boundary layer by (1) and of the mean enstrophy in the hot boundary layer (14) showing the
exponential increase of the intensity of convection.

inside the hot boundary layer is denoted δT ′. The normalized variables h = h′/H ′ and
δT = δT ′/T ′

c are also defined. For �T ′ = 1 mK, figure 3(a) shows the time evolution
of h and of δT until the beginning of the convective regime. δT increases to reach
a maximum after 1 s of heating, and then it decreases progressively according to the
function et × erfc (

√
t) (Zappoli & Durand-Daubin 1994) as a result of the PE action

that increases the temperature of the core. For a SCF diffusing layer, the local Rayleigh
number based on h and δT is given by (Gitterman & Steinberg 1970; Carlès &
Ugurtas 1999):

Racorr (h, δT ) =
g′ρ ′2

c β ′
P C ′

P h′4

λ′μ′

(
δT ′

h′ − �T ′
a

H ′

)
. (12)

To account for the high compressibility of the SCF, the classical expression of
the Rayleigh number is modified in (12) by the adiabatic temperature gradient
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Figure 4. (a) A cut of the temperature field for �T = 3�Ta; the lower and upper shaded
isotherms correspond respectively to (T − Ti)/�T = 0.33 and 0.66. (b) A cut of the iso-surface
Q =2 × 10−8 (Qmin = −1.4 × 10−5, Qmax =2.8 × 10−5) shaded by the values of the vertical
component w of the velocity showing the vortical structures in the thermal boundary layers
shown in (a).

(�T ′
a/H

′ = g′β ′
P T ′

i /C ′
P ) obtained by moving a fluid particle along the hydrostatic

pressure gradient. This term, that can be neglected for a normally compressible
fluid, represents the stabilizing contribution of the Schwarzschild criterion commonly
encountered for large air columns, and according to which the fluid layer is stable
if

δT ′

h′ <
�T ′

a

H ′ =
g′β ′

P T ′
i

C ′
P

. (13)

In the considered model, the adiabatic temperature gradient �T ′
a/H

′ = 0.34 mK cm−1

and does not depend on the proximity ε to the CP since β ′
P and C ′

P have the same
critical exponent of −1. To better estimate the interaction between natural convection
and stratification, the normalized intensity of heating of the bottom wall �T is
henceforth expressed in terms of �Ta = �T ′

a/T ′
c .

Figure 3(b) shows the time evolution of Racorr (h, δT ) for �T = 3�Ta . According
to (12), Racorr (h, δT ) behaves as h3 × δT ∼ t

√
t × et × erfc(

√
t); in fact, Racorr (h, δT )

can be very well fitted in figure 3(b) by the curve 180 × t
√

t × et × erfc(
√

t), and we

can easily prove that at long time scales, erfc(
√

t) ∼ e−t × t− 1
2 , which explains the

linear time evolution of Racorr (h, δT ). When the local Rayleigh number exceeds the
critical value of about 1100 (Chandrasekar 1961), the hot boundary layer becomes
unstable and convective cells start to become organized along the bottom plate. The
considered critical Rayleigh number is that of a fluid layer with mixed (solid–free)
boundary conditions. However, because the hot boundary layer is connected to the
bulk of the cavity, its upper boundary is not sharply defined, and the real critical
Rayleigh number should slightly differ from 1100; but this value, even though not
precise, remains the most suitable theoretical value for the considered configuration.
Figure 4(b) enables the visualization of these vortical structures along the isothermal
walls using the Q-criterion given by Q = 1

2
(ΩijΩij − SijSij ) where Sij and Ωij denote

respectively the symmetric and anti-symmetric parts of ∇v. (Dubief & Delcayre 2000).
Then, the intensity of these vortices rises exponentially with time; this can be easily
seen on the time evolution of the mean enstrophy in the hot boundary layer shown
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Figure 5. Evolution of the temperature difference δT across the hot boundary layer as
a function of its thickness h. Time evolves in the arrows’ direction and the symbols (�)
correspond to the beginning of the convective regime. The neutral stability line was derived
from (12). The two-dimensional results were obtained using a cavity of height 1.5H′ with
periodic vertical boundaries; for �T � 0.72�Ta , a reverse transition to stability is obtained
though the Schwarzschild line.

in figure 3(b) and defined by

Ens(h) =
1

2h

∫ h

0

[(
∂u

∂y
− ∂v

∂x

)2

+

(
∂u

∂z
− ∂w

∂x

)2

+

(
∂v

∂z
− ∂w

∂y

)2
]
dz. (14)

The intensity of these convective cells keeps rising until they produce enough
convective transport to deform the isotherms causing the collapse of the thermal
boundary layers. For �T =3�Ta , the collapse of the hot boundary layer occurs
around t = 120 and corresponds to the symbol (�) in figures 3(a) and 3(b); afterwards
the convective regime starts and the definition of the hot boundary layer holds no
more. The cold boundary layer developed along the top plate is governed by the same
mechanisms and its hydrodynamic stability depends on the same criterion (Accary
et al. 2005b); the same scenario occurs for the cold boundary layer.

In figure 5, the critical value of δT for the convection onset in the hot boundary
layer is derived from (12) and plotted versus h (the thick solid line) defining the un-
stable zone. This neutral stability curve consists of two lines representing the limits
of the convection-onset criterion depending on h. For small values of h, the fluid
compressibility can be neglected and the stability of the hot boundary layer is
governed by the classical Rayleigh criterion, obtained from (12) by dropping the
term g′β ′

P T ′
i /C ′

P , while for larger values of h, viscosity and thermal diffusion are
neglected, and the stability depends on the Schwarzschild criterion obtained from
(13). For several intensities of heating �T , figure 5 shows the evolution curves
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Figure 6. (a) A cut of the temperature field for �T = 3�Ta showing the beginning of
the convective regime; the lower and upper shaded isotherms correspond respectively
to (T − Ti)/�T =0.33 and 0.66. (b) A cut of the corresponding iso-surface Q = 0.015
(Qmin = −0.15, Qmax = 0.15).

δT (h) for the hot boundary layer until the beginning of the convective regime,
which corresponds to the symbol (�). Figure 5 also shows results obtained in a
two-dimensional approximation with periodic vertical boundaries (the dashed lines)
(Accary et al. 2005c). The boundary effects induced by the presence of the lateral walls
in the three-dimensional case accelerates the development of convection and, at equal
intensity of heating, the convective regime is reached earlier in comparison with the
two-dimensional approximation with periodic vertical boundaries. For low intensities
of heating, in practice for �T � 0.72�Ta , once the hot boundary layer has become
unstable, the intensity of the convective cells rises exponentially with time until they
deform the isotherms. However, this deformation is not large enough to induce the
collapse of the hot boundary layer that keeps growing and the curve δT (h) crosses the
Schwarzschild line back into the stable zone again and a reverse transition to stability
obtained without any external intervention (Accary et al. 2005a). This phenomenon
requires that the thermal boundary layers grow enough without reaching the centre
of the cavity (in order to avoid their interaction); a height of 1.5H’ has been necessary
in our case.

6. The beginning of the convective regime
The convective regime starts with several plumes rising from within the thermal

boundary layers as shown in figure 6(a). These plumes are encircled by doughnut-
shaped structures shown by the Q-criterion in figure 6(b). Convection improves the
heat transfer between the isothermal walls and the bulk of the cavity, resulting into
a faster thermal balance in the whole fluid volume.

For all the heating cases that we considered, the hot boundary layer always became
unstable before the cold one. As the heating increases, convection is triggered earlier
since the instability criterion (Racorr (h, δT ) > 1100) is satisfied earlier; consequently,
the thickness of the thermal boundary layer is smaller when the convection arises
and the size of the convective structures decreases as shown in figure 7. A detailed
study of the size of the convective structures has been done in a two-dimensional
approximation in Accary et al. (2005b).



Turbulent Rayleigh–Bénard convection in a near-critical fluid 137

(a) (b)

t = 48 t = 29.4

z

yx

Figure 7. Cuts of temperature fields for (a) �T = 15�Ta and (b) �T = 30�Ta showing the
effect of the intensity of heating on the temperature field at the beginning of the convective
regime. The lower and upper shaded isotherms correspond respectively to (T − Ti)/�T = 0.33
and 0.66.

7. Transition to turbulence
In the convective regime of the flow that follows the convection onset, the Rayleigh

number, based on the total height H ′ of the cavity and on the temperature difference
�T ′ between the isothermal walls, (15), becomes a better indicator of the regime of
the flow:

Racorr =
g′ρ

′2
c β ′

P C ′
P H ′4

λ′μ′

(
�T ′

H ′ − �T ′
a

H ′

)
. (15)

For �T <�Ta , the Rayleigh number obtained from (15) is negative; this, however,
does not prevent convection arising in the thermal boundary layers when the local
Rayleigh number (12) exceeds 1100. But for �T >�Ta , for example for �T = 1.5�Ta ,
the term in front of the parentheses in (15), which diverges as ε−1.5, is very large and
results in a Rayleigh number of 2.68×106, while for a PG the Rayleigh number is
directly proportional to �T .

The turbulent Rayleigh–Bénard convection is characterized by a statistically steady
state of heat transfer. In the considered configuration, the setting in the turbulent
regime may be identified from the time evolution of the mean Nusselt numbers on
the isothermal walls, given by

Nu = − 1

�T

∂T

∂z
. (16)

For �T = 7.5�Ta which corresponds to Racorr =80×106, (15), figure 8 shows the
time evolution of the mean Nusselt numbers on the bottom wall and on the top
one. The convection onset is easily identified by the improvement of the heat
transfer corresponding to the increase in the mean Nusselt numbers that afterwards
stabilize around almost the same value, which indicates the setting in of the turbulent
flow.

Figure 9(a) shows the temperature field obtained in the turbulent regime. We notice
first the appearance of crest-like patterns defining flat regions on the isothermal
walls where the temperature is almost homogeneous in the (x, y) plane, we notice
also the spreading of the isotherms along the adiabatic walls. Figure 9(b) shows the
chaotic flow that takes place in the turbulent regime. The vortical structures have no
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Figure 8. Time evolution of the mean Nusselt numbers, (16), on the bottom wall (Nuh, h for
hot) and the top one (Nuc , c for cold) for �T = 7.5�Ta (Racorr = 80 × 106).
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Figure 9. (a) A cut of the temperature field for �T = 7.5�Ta; the lower and upper
shaded isotherms correspond respectively to (T − Ti)/�T = 0.33 and 0.66. (b) A cut of the
corresponding iso-surface Q = 0.015 (Qmin = −0.37, Qmax = 0.67).

particular shape; the tubular and toroidal structures obtained at the beginning of the
convective flow have completely disappeared.

In order to better estimate the size of the vortical structures and its time evolution, a
discrete Fourier transformation of the vertical velocity component w has been carried
out in both the x and y directions. The operation required the fictional assumption
of a periodic and odd distribution of w in the horizontal directions with a period of
2H ′. Along the line (y = y0, z = z0) and for a wavelength H ′/k associated with the
mode k, the Fourier coefficient of w(x, y0, z0) is given by

Wx(k, y0, z0) =

∫ 1

0

[w(x, y0, z0) − (−1)kw(1 − x, y0, z0)]sin(2πkx)dx. (17)

Once the coefficients Wx(k, y0, z0) are computed for all (y0, z0), the mean contribution
of the mode k to the field of w is determined by

W̄x(k) =

∫ 1

0

∫ 1

0

|Wx(k, y, z)|dydz. (18)



Turbulent Rayleigh–Bénard convection in a near-critical fluid 139

3.0(a)

2.5

t = 89.25
t = 290.6
t = 325.6

2.0

1.5

10
3 

× 
W

y

1.0

0.5

0 5 10

k

3.0(b)

2.5

t = 89.25
t = 290.6
t = 325.6

2.0

1.5

1.0

0.5

0 5 10

k

10
3 

× 
W

x

Figure 10. The weights of the different wavevectors k in the spectrum of the vertical velocity
component w, in the directions x (a) and y (b). On average, the convective structures are
clearly larger in the steady-state turbulent regime (t = 290.6 and 325.6) than at the beginning
of convection (t = 89.25).
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Figure 11. Vertical cuts at x = 0.5 and y = 0.5 of the normalized temperature field (T − Ti)/
�T shown in figure 9(a) (�T = 7.5�Ta , t =290.6), with the corresponding velocity fields.

Figure 10 shows the contribution of the different modes to the spectrum of the
component w in the x and y directions at the beginning of the convective regime
and in the turbulent one. We notice an important contribution of small wavelengths
ranging between H ′/11 and H ′/4 at the beginning of convection (at t = 89.25, see
figure 8). But as time goes on, the spectra of w show a much higher contribution of
large wavelengths, sometimes exceeding half the of the cavity width. Similar results
were obtained for the horizontal velocity components, u and v. Thus, the turbulent
flow consists mainly of large vortical structures.

Figure 11 shows cuts of the temperature field in the vertical median planes
of the cavity with the corresponding velocity fields that confirm the presence of
large convective structures in the steady-state turbulent regime. We notice that the
temperature field consists mainly of two unstable thermal boundary layers exchanging
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Figure 12. Time evolution of (a) the local velocity magnitude (scaled by V ′
PE = H ′/t ′

PE =

3.9 cm s−1) and (b) the local normalized temperature at three positions (z = 0.05, 0.5, and 0.95)
along the line x = y = 0.5, for �T = 7.5�Ta .

heat and mass with the bulk of the cavity in which the convective activity induces a
quasi-homogeneous temperature.

Figure 12 shows the time evolution, along the vertical axis of the cavity ( x = y = 0.5),
of the velocity magnitude and of the temperature at the free boundaries of the thermal
layers ( z =0.05 and z =0.95) and at the centre of the cavity; the velocity components
have the same order of magnitude. Despite convection, the thickness of the thermal
boundary layers may be computed at each point of the horizontal walls using the
definition of § 3; the normalized values of the thermal boundary layer thicknesses
(averaged in space and in time) are around 0.05. Figure 12(a) underlines the chaotic
convection that takes place in the whole fluid volume; the velocity has been monitored
at 25 different points of the cavity and confirms the chaotic behaviour. In the steady-
state turbulent regime, figure 12(b) shows a slight difference of the time-averaged
temperature between positions z =0.05 and z = 0.95, which reveals the existence of a
temperature gradient in the bulk of the cavity that will be investigated in § 8.

8. The global thermal balance of the cavity
The steadiness of the mean Nusselt numbers on the isothermal walls (figure 8,

turbulent regime) reflects the setting in of a statistically steady-state heat transfer
across the cavity. However, figure 13 revels the strong non-uniformity of the Nusselt
number distributions on the isothermal walls. Of course, these patterns are directly
related to those of the temperature field: the Nusselt number minima are reached
under the crest-like patterns shown in figure 9(a), while the maxima are obtained
inside the cells determined by those patterns. These cells are thus characterized by
very thin thermal boundary layers; for the temperature field shown in figure 9(a),
the minimal normalized thicknesses of the thermal boundary layer were about 0.014
for the hot boundary layer and 0.012 for the cold one and were obtained where the
distributions of the Nusselt numbers reach their maxima.

Despite the strongly non-uniform distributions of the Nusselt numbers, in the
steady-state turbulent regime, the mean Nusselt numbers on both isothermal walls
fluctuate around the same value. For different intensities of heating and hence Rayleigh
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Figure 13. Distributions of the Nusselt number on the bottom (Nuh) and the top (Nuc)
isothermal walls, corresponding to the temperature field shown in figure 9(a) (�T = 7.5�Ta ,
t =290.6).
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Figure 14. In the steady-state regime of the turbulent flow: (a) the classical, (16), and the
corrected, (19), mean Nusselt numbers versus the corrected Rayleigh number (15); (b) temp-
erature profiles (averaged on the x, y-plane) for different intensities of heating (T̄ varies between
0 and 1), ATG stands for ‘adiabatic temperature gradient’.

numbers, figure 14(a) reports the mean Nusselt numbers (the filled circles). For a PG,
the experimental results (Poche et al. 2004) and those from a scaling theory (Siggia
1994) show that the Nusselt number behaves as Ra2/7. This behaviour can be observed
for the Nusselt number corrected by the adiabatic temperature gradient (Kogan &
Meyer 2001), given by

Nucorr =
−∂T /∂z − �Ta

�T − �Ta

=
�T

�T − �Ta

(
Nu − �Ta

�T

)
. (19)

For �T 	 �Ta , Nucorr → Nu; but as the intensity of heating decreases, the corrected
expression for the Nusselt number (the filled squares in figure 14a) enables the retrieval
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Figure 15. Time evolution of the mean Nusselt numbers on the isothermal walls obtained
in the three-dimensional case for a Rayleigh number of 2.68 × 106 for a SCF (�T = 1.5�Ta)
and for a PG. The curves were shifted by 2 s for the PG to show the first peak prominently.
For the SCF, the first peak of the mean Nusselt number on the bottom wall reaches the value
of 370, and the beginning of convection at about 60 s is consistent with the result shown in
figure 5, where the convective regime starts at t ′ = 120 × tPE = 58.9 s.

of the Ra2/7 law. However, it should be recalled that the effective heat transfer is
described by the classical expression for the Nusselt number given by (16), not by the
corrected one.

At the global thermal balance of the cavity and for all intensities of heating, figure
14(b) revels the existence of a mean temperature gradient in the bulk of the cavity
equal to the adiabatic temperature gradient. This is a natural structure of the mean
temperature field that ensures the minimal temperature gradients in the thermal
boundary layers with the constraint of a globally stable bulk of the cavity. Indeed, if
the mean temperature gradient in the bulk of the cavity were larger than the adiabatic
temperature gradient, the bulk of the cavity would lose its hydrodynamic stability. In
return, if the mean temperature gradient in the bulk of the cavity were smaller than
the adiabatic temperature gradient, the bulk of the cavity would be ‘too’ stable, but
this would increase the temperature gradients in the thermal boundary layers.

9. Comparison between a SCF and a PG, effects of stratification
A comparison between the Rayleigh–Bénard convection in a SCF and that in a PG

is carried out here in the three-dimensional case for a Rayleigh number of 2.68×106

for which the density stratification of the SCF clearly affects the development of
convection (�T = 1.5�Ta). The mathematical model described in § 3 was adapted
to the PG case, mainly by setting a = b = 0, Λ =0, and ε = 0 in (5) to (9), and
by choosing reference values of temperature and density compatible with the PG
assumption; these were set to 300 K and 1.8 Kg m−3 respectively. An intensity of
heating of �T ′ = 5 K was applied to the bottom wall in the PG case and the height
H ′ of the cavity, deduced from the classical expression of the Rayleigh number, is
equal to 13.8 cm. A mesh of 1003 and a time step of 0.125 s have been used.

Figure 15 shows the time evolution of the mean Nusselt numbers for the SCF
and for the PG. Time is not scaled in this case because the PE does not exist for
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Figure 16. Cuts of temperature fields for a Rayleigh number of 2.68 × 106: (a) for a SCF
(�T = 1.5�Ta) and (b) for a PG, showing how the strong stratification of the SCF holds back
the development of convection. The lower and upper shaded isotherms correspond respectively
to (T − Ti)/�T = 0.33 and 0.66.

the PG. The adiabatic temperature gradient in a PG is very small compared to
�T ′/H ′, hence: Nucorr → Nu). The large temperature gradients obtained at the very
first seconds of heating in the case of the SCF are responsible for the very high peak
of the Nusselt number. For the SCF, figure 15 reports very similar evolutions of the
mean Nusselt numbers on both isothermal walls. By contrast, for the PG, while the
mean Nusselt number on the bottom wall shows a similar behaviour to that of the
SCF during the diffusive regime, no heat transfer is detected on the top wall (Nuc = 0)
until the beginning of convection. Because the PE is practically non-existent for the
PG, the heat transfer is only activated on the top wall when the thermal plumes
rising from the hot boundary layer reach it. Even though the Prandtl number is about
18 times smaller (according to the mathematical model, the Prandtl number of the
PG is about 2.27 against 39.6 for the SCF), convection in the PG is much more
developed than in the SCF at the same Rayleigh number (Verzicco & Camussi 1999),
as shown by figure 16. The fluctuating time evolution of the mean Nusselt numbers
for the PG results from this intense convective activity. By contrast, the trace of the
diffusion-dominated temperature field (figure 16a) obtained for SCF due to its strong
stratification is visible on the time evolution of the mean Nusselt numbers after the
convection onset. Under these conditions, the global thermal balance of the cavity is
mainly achieved by diffusion at long time scales because of the critical vanishing (as
ε1/2) of the thermal diffusivity of the SCF. We notice finally that even though the
temperature field of the SCF is diffusion-dominated while it is convection-dominated
for the PG, the corrected mean Nusselt number at the global thermal balance of the
cavity is the same in both cases.

10. Conclusions
The numerical simulation of the turbulent Rayleigh–Bénard convection in a SCF

is a natural extension of the previous two-dimensional numerical studies of laminar
convection and instability mechanisms. In this paper, the mathematical model for SCF
flows with the appropriate acoustic filtering has been recalled, then a description of the
different stages of the SCF flow in a cube-shaped cavity heated from below were re-
ported from the first seconds of heating until the setting in of a statistically steady state
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of heat transfer, for Rayleigh numbers ranging from 2.68 × 106 up to 160 × 106. While
the scenarios of the convection onset and disappearance (reverse transition to stability)
could be observed in the previously reported two-dimensional results, the convective
regime and the transition to turbulence required three-dimensional simulations.

At the beginning of convection, tubular convective structures appear inside the
thermal boundary layers while the thermal plumes are encircled by toroidal vortical
structures; the size of these structures decreases as the intensity of heating increases.
In the turbulent regime, the convective structures grow until their size exceeds half
of the cavity, and create on the isothermal walls several cells where an intense heat
transfer takes place. Despite the non-homogeneous heat transfer on the isothermal
walls, the steadiness of the mean Nusselt numbers around the same value reflects the
global thermal balance of the cavity. The relation between that equilibrium Nusselt
number and the Rayleigh number obtained for a PG (Nu ∼ Ra2/7) is applicable to the
SCF, provided that the adiabatic temperature gradient is taken into account in the
expressions for both numbers. In the turbulent regime, the temperature field consists
mainly of two unstable thermal boundary layers and a bulk characterized by a mean
temperature gradient equal to the adiabatic temperature gradient. For relatively high
intensities of heating (�T 	 �Ta), the global thermal balance of the cavity is achieved
by a chaotic convection invading in the whole fluid volume. By contrast for weak
intensities of heating (�T >∼ �Ta), the strong density stratification, due to the high
isothermal compressibility of the fluid, prevents the free development of convection
whose penetrability is dramatically reduced; in this case, the thermal balance of the
cavity is mainly achieved by diffusion and therefore on long time scales.

Finally, a comparison between the SCF and the PG for the same Rayleigh number
showed two major differences. The first, related to the PE, is the absence of heat
transfer on the top wall for the PG until the beginning of convection; while for the
SCF, the time evolutions of the mean Nusselt numbers on both isothermal walls are
similar. The second, related to the stratification of the SCF and thus only encountered
for �T >∼ �Ta , is the diffusion-dominated thermal balance of the cavity for the SCF,
while it is convection-dominated for PG.
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